
Pergamon 
S0021--8928(96)00008-1 

J. Appt Maths Mechs, Vol. 60, No. 1, pp. 47-59, 1996 
Copyright © 1996 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0021--892.8D6 $24.00+0.00 

A SUBMODEL OF HELICAl, MOTIONS 
IN GAS DYNAMICS'[" 

S. V. K H A B I R O V  

Ufa 

(Received 4 January 1995) 

An invariant submodel, constructed in a subalgebra from the sum of a rotation and a displacement [1], is considered within the 
framework of the PODMODELI program. A group classification is carded out and the optimal system of subalgebras, which is 
compared with the optimal system of the basic model, is calculated. Furthermore, the system of equations of the submodel is 
reduced to a symmetric hyperbolic form. Simple solutions of this system, with pressure and density which depend solely on time, 
are considered. The characteristics, the characteristic conoid, trajectories and strong discontinuities are calculated for these simple 
solutions. The necessaEy conditions for the existence of a solution without a singularity on the axis are derived. @ 1996 Elsevier 
Science Ltd. All fights reserved. 

1. E Q U A T I O N S  OF THE S U B M O D E L  AND T H E I R  S Y M M E T R I Z A T I O N  

The system of gas-dynamic equations in cylindrical coordinates 

pdU + Vp = f, A - l d p + U x + V r + r - t W o = - r - l V  

dp = p ( U  x + V r + r-lW0 + r-iV) = 0 when dS = 0 

('~7 = (Dx, Dr ' r-lD0), f _ (0, p W  2, - pVW),  A. = p c  2, 

d =  D, + UDx + UD, + r-lDo) 
c 2 = DflDp 

(1.1) 

is considered, wheie U = (U, V, W) is the velocity, p is the pressure, p is the density, S is the entropy 
a n d p  = f(p, S) is the equation of state. System (1.1) with an arbitrary function A(p, p) admits of 11 
transformations and a continuous parametric group of transformations with the Lie algebra L u  [1]. 

A submodel of helical motions is constructed as an invariant solution using the one-dimensional 
subalgebra H = {X1 + X7} C L l l ,  where X1 = Dx is the operator of displacement with respect to the 
variable x and X7 = D0 is the operator of rotation about the x axis, written in the cylindrical variables 
x, r, 0 which are related to the Cartesian coordinates by the equalities 

X 1 ---- X, X 2 = y = rCOS0, X 3 = Z = r s i n 0  

ul = U, u2 = Vcos0 - Wsin0, u3 = Vsin0 + Wcos0 

An invariant solution is sought in the form 

(1.2) 

U = U(t, r, s), V = V(t, r, s), W = W(t, r, s) 

p = p ( t , r , s ) ,  p = p ( t , r , s ) ,  s = x - 0  

The equalities r = const and s = const correspond to a helix. 
By the transformation of the invariants 

u = V ,  ~ = U - r - I W ,  w = W  

the factor system reduces to one of the evolutionary type 

p(~at+UUr+X)us)+pr=Pa,  A - I (p t+upr+X)p .~ )+ur+x) s=-r - lu  

(1.3) 
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p, + up~ + x~p~ + p(u~ + x L) = -r-lup or S t + uS r + uS, = 0 (1.4) 

(u = (u,u, w), a = (a t ,a2,a 3) = (r-lw2,2r-2uw,-r-tuw)) 

In order to study the correctness of  the Cauchy problem for system (1.4), it is necessary to reduce it 
to a symmetric form [2, p. 70]. To do this, the equation for the entropy is chosen and a linear 
transformation of the velocities is carried out using the formulae 

• " D i D'=bjuJ(ul=u,  u2=xL u3=w) ,  uJ=c:D ', b j c J - S t  

System (1.4) is transformed into the system which, in matrix form, is 

Atqt + Alqr  + A2qs = D, 

A t = diag{p,p,p,A-l,1}, 

A k = 

b I = 1, 

q = (ul, u2, u3, P, s ) r  

D = (d I , d 2, 4 ,  d4,0) r 

pck'O i 0 0 blkbk +b~bk+ 2 0 

0 pckDi 0 b2bk+b2bk+2 0 

0 0 pc:'O i b3bl, + b~bk+ 2 0 
k A-Ickx)i 0 c~ c~ c 3 

0 0 0 0 c ~  i 

b 2 = l + r  -2, b3=0,  b 4 = - r  -1, 

, k = 1 , 2  

d 4 = _ur -I _ "oi(c), + ci 2) 

(1.5) 

di pbja i +pci~k(~t n m i X 1 X 2 = +CruX) ~xn)bj, =r, =s 

In the case of symmetric matricesA k, it is required that the six equalities 

ck = b~bk i + b3bt+ 2, k = 1,2; i = 1,2,3 (1.6) 

for determining the nine elements of the matrix B = (b~) must be satisfied. 
If one introduces the angles o,0 between the vectors bl = (b~, b E, b~) and bj, it then follows from (1.6) 

0[13 =0[12 = g / 2 ;  Ibll= 1, Ib21= r ( l+ r2 )  -Y2 sin -1 cx23, Ib31=(l+r2)  ~ ctgot23 

Specification of  the angle tz23 and the directions of  the vectors bl and h3 (or b2) with the conditions 
b l -  b2 = hi-  ba = 0 defines the matrix B. 

For example, let 

¢t23 = h i 4 ,  h i =(1,0,0) r ,  b 3 =(0,0 , ( l+r2)Y:)  r 

b 2 = (0 , r ( l+ r2 )  -~ ,  r(l+r2)-Y2) r 

then 

c~=l ,  c ~ = c ~ = c 2 = c 2 = 0 ,  c 2 = ( 1 + r - 2 )  ~6 

[~p~l (~2 + 2~3), 13p~ l (2~ 2 (1 + r 1) + x~ 3 (1 - 2r  2)), - r-l~ 1 , 0) T 

H e r e  

D = (13r2p(~ 2 - x~3) 2, 

13 = r-i(1 + r2) -l 

2. S I M P L E  S O L U T I O N S  

The system of equations (1.4) resembles the system of equations of plane gas dynamics for which a 
constant solution is a simple solution which depends on five arbitrary constants and is specified in the 
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whole space for all times. It would also be desirable to have a solution with analogous properties in 
the case of system (1.4). It is proposed that we seek a solution with a pressure and density which depend 
solely on t imep  =: p( t ) ,  p = p(t). In this case, (1.4) becomes the overdetermined system of equations 

A(p, p)dp : pdp (2.1) 

U t + u u  r + "OUs = a, Ur +.1,) s + r - l u  + p - l p ,  = 0 

The first equation of  the system determines the functionp(t) if the function p(t) is specified. System 
(2.1) defines isentropic flows and it is necessary to investigate it for compatibility. The equations of the 
system are initially integrated in Lagrangian variables. 

Remark. System (2.1) follows the symmetry of the basic system of equations of gas dynamics, the normalization 
factor of the algebra H in the algebra LI: Or, Os, t3s + ~ .  In addition to this, the extension operators rot + UOu + 
W3w, p~p are permitled. 

The change to Lagrangian variables is defined by the system of ordinary differential equations 

Otr = u(t, r, s), Od = D(t, r, s); rlt=0 = ~, slt_~ = 1] (2.2) 

The solution of (2.2) r = r(t, ~, ~i), s = s(t, ~, 11) defines the change to the variables ~, 11 (t is a parameter) 
is the Jacobian of the transformation is non-zero r~sn - rnsg # 0 

In Lagrangian variables, all the equations of system (2.1) are integrated with respect to the 
variable t 

r 2 = ~2 + tX2t 2 + 2txlt, s = T I + [~t - a r c t g [ ~ ( ~ l t  + ~2)-1] (2.3) 

(2.4) 

u = r-l(ct2t + txl), a) --- 13 - Yr -2, w = yr -1 (2.5) 

r(r~sn _ rnsg ) = p-I j (2.6) 

The quantities ol # 0, 0q, T # 0, 13, J # 0 depend on ~ ~ 0, 11. In (2.6), the initial data are not taken 
into account since they will be subsequently changed. On substituting (2.3) into (2.6), we obtain an 
equality from which a rational form of the function 

P= P3(t)I Ps(t), ~ = S2t2 + Slt + So, P5 = TstS + T4t4 + T3t3 + T2t2 + TIt + To 

is determined. 
With such a function p(t), equality (2.6) has a free variable t which occurs in a rational manner. 

Equating the coefficients accompanying the different powers of t to zero we obtain eight equations for 
the functions t~, t~l:. 13 and the constants T/, Si. 

Equivalence in the set of possible solutions is introduced using the transformations which are permitted 
by system (2.1) and have been noted in the remark. They form a group G5 (invariant variables are not 
indicated): (1) t' = t + to; (2) s' = s + So: (3) s" = s + ct, u" = u + c; (4) r' = at,  u '  = au,  w" = aw; (5) 
p' = bp. These transformations are extended to the coefficients of the solution (2.3) 

iX' := a- l t~,  0t~ = a - 2 a 2 t o  + 0~1 a -2 ,  ~,2 = a-2~2 + a 2 a - 2 t 2  + 2 a l a - 2 t o  

J ' =  ja -2b  - l ,  ~ ' = ~ - c ,  T" =Ta -2 

11' -'= 11 - s o + (fJ - c )t o - arctg[Yt0 (txst 0 + ~2)-I] 

and, in this case, equality (2.4) remains invariant. The parameters of the transformations to, So, a, b, c 
are functions of ~, 11 and, in this case, the initial data for problem (2.2) change. The extended 
transformations form a group Gs, the Lie algebra of which is defined by the basis set of operators 

~,~, ;91~, J3 j ,  cc23~, +cq~-'3~ + ( J ] - ~ - 2 ) 3 n ,  ~ +2a,3~, + ~  +2@~ 
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The  invariants of  the group G5 are: I =  Ta -2 (a~ - (x2~2)'} r2 = -1 .  The  value of  the second invariant 
is taken by virtue of  equali ty (2.4). 

The  new parameters  o f  the solution ~ = a l a  -2, I are in t roduced 

r 2=(g2[12+(t+~)2],  s=l]+~t-arctg[l t (~ 2+~t+12) -1] (2.7) 

u = a2r- l ( t  + ~), D = ~ -  lot2r -2, w = laZr  -1 (2.8) 

T h e  equivalence t ransformat ions of  the invariant parameters  take the form 

~ '  = 13 - So + (6 - C)to - arctg[lto(~to + ~2 + F)-1], a '  = a a  -l 

;" = + toa- , 13' = 

In the space of  the parameters  a ,  ~, 6, rl, the group acts transitively and, hence,  any values of  the 
parameters  can be obta ined f rom the fixed values, for  example,  a = 1, ~ = 0, I~ = 0, rl = 0. 

Formulae  (2.7) define the change to Lagrangian variables if not  all o f  the  p a r a m e t e r s / ,  a ,  ~, ~1,11 are 
fixed. If  the magni tude  of  the pa rame te r  l is arbitrary, it is possible to fix th ree  parameters  f rom a,  ~, 
13, rl and, moreover ,  by th ree  methods.  

The  case ~ = [~ -- rl = 0 gives the solut ion 

p = t  -1, u = r t - t s i n 2  s, ~ = t - l s i n s c o s s ,  w = - r t - l s i n s c o s s  (2.9) 

The  case a = 1, I] = ~ = 0, af ter  a displacement  with respect  to t, gives the solution 

p = l ,  u = t r  - l ,  ~ = - r - 2 ( r  2 - t 2 )  ~, w = r - I ( r  z - t 2 )  )~ (2.10) 

which is invariant with respect  to the opera to r  ~y. 
The  case  a = 1, ~ = rl = 0 gives the solution 

P = t -1, U = tr -1 

= s t  -l _ r - 2 ( r  2 _t2)Y2 + t - I  arctg[t(r 2 - t 2 ) - ~ ]  

w = r - l ( r  2 - t 2 ) ~  

(2.11) 

which is invariant with respect  to the ope ra to r  tO e + ~ .  
The  case  a = 1, ~ = I~ = 0 leads to (2.10). 
L e t / b e  a fixed funct ion of  the parameters  a ,  ~, 15, 11. Then,  only two paramete rs  can be fixed. 
The  case a = 1, ~ = O, I = I( f l ,  JO leads to the solution 

p = (T l t  + To) - l ,  u = tr -l 

= _r-2 ( r  2 _ t 2 )~  + (Tit + To )-1TI {s + arctg[t(r 2 - t 2 )-Y2 ] + g( r2 - t2 )} 

w = r - I ( r  2 - t 2 )  Y2 

where  g(~,) is an arbitrary function. 

Remark.  The  quantity I = I(To~l + Tu ¢) is expressed in terms of an arbitrary function, and it can therefore be 
taken as an independent parameter in the Lagrangian transform and the solution can thereby be reduced to the 
formulae which have been considered earlier. This remark refers to cases when the magnitude of I is determined 
with a functional arbitrariness. 

The  case a = 1, ~1 = 0, I = I (~ , f )  leads to the solution 

O=(TIt + To) -I, u=( t  +~)r -I, "o=-r2[r2 - ( t  +~)2]~ 

w = r-J[r  2 - (t + ~)2]~ 
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The  function ~ = ~(t, r, s) is de te rmined  f rom the equali ty 

g ( K )  = s + arctg[t(r 2 - (t + ~ )2 )~) ( r  2 _ t 2 + t~)-i ] + 

+ToTi )~ [[K + 2To~(K + 2To~ - Tl~) ~ ]-l ~d~ 

where  g(K) is an arbitrary function, K = Tl( r  2 - t 2 - 21~) - 2To~. 
The  case ct = 1., 11 = O. I = I(~,  6)  gives the solution 

p , - t - l ( t +  To) -1, u = ( t + ~ ) r  -I 

~) = st -I - r -2 [r 2 - (t  + ~)2 ])~ + t - larc tg[ t (r2  _ (t + ~)2))~ ( r  2 _ t 2 _ t~)- i  ] 

w = r - i [ r  2 - (t +~)2] Y2 

The  funct ion ~ = ~(t, r, s) is de te rmined  f rom the inequality 

g(R 2) = st -I +t - I  arctg[t(R 2 - ( ~ -  TO)2))~)(R2 - To 2 + t~+ 2TO~)-I]+ 

1 R_ ITO..2 (T ° + R)2 arctg[(To - R)(TO + R) -1 (R  + T O - ~)Y2 ( R -  T O + ~)-Y2 ] + + 

+ 1  To I arccos[R_ I (~ _ To)] 

where  g(R 2) is an arbitrary function, R 2 = r 2 - t 2 + / e  0 - 2~(t + To). 
The  case ~ = [5 = O, I = I(ct, f )  leads to the solution 

p = (t 2 +To) -I, u = t ( r  2 + l o ) r - I ( t  2 +To)  -I (2.12) 

10 = - r - 2 ( r  2 + lo )~(Tor2  - l o t 2 ) ~ ( t  2 + TO)-I 

w = r -1 ( r  2 + I 0 )~  (To r2 - 1012 )~  (t 2 + T 0)-I 

The  case ~ = 11 = O, I = I ( a ,  [1) leads to the solution 

0 = t-! ( 12 +'~2)-I, U = t r ( t  2 + t 2)-I 

~ = s t  -I + t  -I a r c t g ( t l - I ) - l ( l  2 +12) -l,  w =  r l ( l  2 +12) -I 

The  function I = I(t ,  r, s)  is de te rmined  f rom the equali ty 

(I  - x ) ( l  + x) -I exp [2x ( s t  -1 + t -I arctg(tl -~ ))] = g(r  2 (12 - "c 2)(12 + x 2 ) - I )  

where  x is arbi t rary constant  and g(k) is an arbitrary function. 
The  case ~ = 11 = O, I = I((z, 4) leads to the solution 

p = t -l (Tit + To) -I , u = r(t  + ~)[12 + (t + 4) 2 ]-2 

X ) = - 1 1 1 2 + ( t + ~ ) 2 ]  -I ,  w = l r [ l  2 + ( t + ~ ) 2 ]  -I 

where  ~ = -1/21_(1/412 - 12 - It  ctg s) lt2 and the funct ion I = I(t ,  r, s)  is de te rmined  with a functional  
arbitrariness f rom the differential  equat ion 

Tract/a + [T I (12 - 4 2) + To~]l ~ = I(TO - 2Tl~ ) 

It remains to consider the possibility o f  w = 0 in (2.5). The  solution of  system (2.1) in Lagrangian 
variables takes the; form 

r = t x t + ~ ,  s = ~ t + ~ ;  u = ~ ,  ~ = f l ,  w = O  
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Transformations (1)-(5), extended tothecoefficients,  fo rmat rans~ivegroup  

~'=l~ta -1, 13'=13-c, ~ ' = a - I ( ~ + ~ ) ,  ~ ' = ~ + ~ ( 1 3 - c ) - s 0 ,  J "=Jb- la-2  

All the coefficients tx = 1, ~ = 13 = "q = 0,J = 1 can be fixed by these transformations. In the Lagrangian 
substitution, two parameters must remain arbitrary. Only the following consistent cases are obtained. 

The case 13 = ~ = 0 

p = r 2, U = r r  l, ~ = w = 0 (2.13) 

The case 11 = ~ = 0 

9 =t-3, u = r t  -I, x~=st -1, w = 0  (2.14) 

Thus, solutions of system (2.1) which allow of a Lagrangian substitution are reduced by equivalence 
transformations to the simplest solutions (2.9)-(2.14). The solutions (2.9)-(2.12) allow of an increase 
in the constant parameters up to five with the transforms of the permitted group (1)-(5). An explicit 
formula for the pressure is obtained in the case of a polytropic gas A = ~o from the first equation of 
system (2.1): p = Bp -a. 

(2.9) ~ u = r(t + t o)-i sin 2 (s - ~o t - s 0) (2.15) 

= ~)o + ~ ( t + t o )  -I s i n 2 ( s - 9 o t - S o )  

w = - ~ r ( t + t o ) - l s i n 2 ( s - ~ o t - S o ) ,  p=p0( t+ t0 )  -l, p = p o ( t + t o )  -~ 

( 2 . 1 0 ) ~ u = w 2 r - l ( t + t o ) ,  D = Do - wor-2[ r2 - w2 (t + tO) 2 ]y2 

W = w o r - l [ r 2 - w 2 ( t + t o ) 2 ]  ~ ,  P=Po,  P = P o  

(2.11) ~ u =  w2r- l ( t  + to) 

= (s + s o ) ( t  + t o)-l _ wor-2[r2 _ w 2 (t + t 0)2 ]½ + 

+( t  + t o)-I  arctg{w ° (t + t o)[r 2 - w 2 (t + t 0)2 ]-)~ } 

W=Wor-I[r  2 - w 2 ( t + t o ) 2 ]  ~ ,  p = p o ( t + t o )  -1, p = p o ( t + t o )  -~' 

(2.16) 

(2.17) 

(2 .12)  =~ u = r - l t ( r  2 -I-/o)(t 2 + To) - l  

~0 = ~0 - r -2(  r2 + ]o)~(To r2 - lo t 2 ) ~ ( t 2  + To )-I 

w = r - l ( r  2 + Io)~(To r2 - lo t2)~( t  2 + To) -! 

p=po( t2+To)  -l, p =  po(t2 + To) -v 

(2.18) 

When I0 = 0, solution (2.18), after the displacement tl = t + ~0w0 -1, has the form 

2 2 2 u=w0rt l ( t  Iw 0+1) -1, X)=u O-wO(t2w 2+1)  -I 

W : w o r ( t ? w  2+1) - ' ,  p=po(t2w 2+1)- '  

p = po(t2w 2 + 1) -'t, S = S 0, c 2 = '~'poPo I (t2w~ + 1) l-~' 

(2.19) 

3. C H A R A C T E R I S T I C S  F O R  S I M P L E  S O L U T I O N S  

In the case of system (1.2), the characteristicsg(x, r, 0) = const for the solution are determined from 
the equations [2, p. 60] 
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Co: gt + Ugx + Vgr + r -IWgo = 0 (threefold) 

C±: gt +Ugx +Vgr +r- lWge  + c Q = O ,  a=(g  +r-2gg)  
The bicharacteristics satisfy the system of ordinary differential equations 

Co: dtx = U, dt r = V, rdtO = W 

C±: d t x = U + c g = Q  -i ,  d t r=Vr l :cgrQ -l ,  r d t O = W + r - l c g e Q  -z 

- d i g  r = Uxg x + Vxg r + r-lWxgo + cxQ, - d t g  0 = Uog x + Vog r + r-lWogo + coQ 

- d t g  r = Urg x + Vrgr ( r - IW)rgo  -I-crQ:T. cr-3 g2oQ -1 

In the case of  system (1.4), there are three invariant characteristics 

Co: ht + uhr + a)h~ = 0 (threefold) 

C±: h t + u h r + ' O h s + c q = O ,  q=(h2r + ( l + r - 2 ) h 2 )  ~ 

The bicharactedstics are defined by the equations 

Co: d t r = u ,  d ~ = l )  

C± : dtr = u + chrq -1, dss = "o + chs ( l + r-2 )q -t , dths = -ushr - "O shs :(- csq 

dth r = - u r h  r - "O rh s T" Crq + cr-3 h 2s q -I 
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where 

G( t )  = ro 2 + 2(to 2 - ~2)~  g( t )  + g2 ( t )  

g(t) = (Xpop  I)y  j (z2w0 2 +  2(z2w  ° + l)]-Y dz 
0 

holds for the bieharacteristie C4. 
For fixed x0, r0, 0o, formulae (3.2) define a parametric representation of a characteristic eonoid with 

parameter X. The vertex of  the conoid is obtained when t = 0. For small tl dose  to the vertex of  the 
characteristic conoid, its intersection by a plane tl = const is a circle 

R 2 + S 2 = ~lToPolt?ro -2 (3.3) 

and, moreover, the centre of  the circle moves along the trajectory (3.1). 

For the simple solution (2.19), the following expressions are obtained for the invariant quantities: 
for the bicharactedstic Co 

r = r o (t2w~ + 1) ~ ,  s = x 0 - 00 + u0t I - arctg(w0h ) (3.1) 
and the characteristic surface has the form 

h = ~ ( r ( t ~ w  2 + 1) ")~, s - u0t 1 + arctg(w0h )) = C 

The representation 

r = (t2w~ + 1) ~ G ~ (t I ) 

s = x o - 0 o + Uot - arctg(woh ) + ~(yp0p~ I )~J l (z2wg + 1) -~/2 x (3.2) 
0 

X[1 + ~2 (Z2W ] + 1)]-J~ [G-I (z) + 1 + z2w 2 ]dz 
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When 0 < T < 2, the integralg(o.) converges while the integral in the expression fors diverges. Hence, 
when tl ~ ~, the oval (3.2) is elongated along the S axis. 

The bicharacteristics Co for (1.2) are 

x = x o + Uoh, 0 = 00 + arctg(w0t l), r = r 0(1 + t21w~))N (3.4) 

The 3 projection of the line (3.4) onto R (x, r, 0) is a straight line which is represented by the equalities 
x = Xo + UoWfflr~lz, y = ro in the Cartesian system of coordinates y = rcos (0 - 00), z = rsin (0 - 00). 

The bicharacteristics C+ for system (1.2) in solution (2.19) are defined by the equalities 

r = r 0 (1 + wgt~)~ [I + ¢20r02 (~2 _ l)g2 + 2cor~I (L2 _ i) g g(1 - Ix2r02 )~2 ]~2 

where 

g = l  ( z2w2 +1)- ' /2( ~'2 +z2wg)  - ~ d z  
0 

x = x  0 +Uo/l +Co t (Z2W 2 + 1)l-'t/2(~, 2 + z 2 w g ) - ~ e z  
o 

0 = 00 + arctg(wotl ) + IX(~,2 _ I)Y2 Co I ( z2w2 + 1 ) l -y /2  (~2 -I- Z2W 2 )-~ r-2dz 
o 

If the parameters ~, and Ix are eliminated from these equalities, then a hypersurface in the space of 
the variables tl, x, r, 0 is obtained which determines the characteristic conoid. When tl ~ 0, the conoid 
is defined by the equalities 

(x - x 0 - Uot i )2 + ( r -  ro(1 + wgt 2 )~ )2 + (0 - 00 - arctg(wot I ))2 = cgt ] 

The intersection of the conoid by a plane h = const is a closed surface in the space N 3 and, in this 
case, a point on the trajectory lies within this dosed surface. The intersection of the surface by a plane 
0 = const is a part of a circle (r > 0) with centre at the point (x0 + u0tl, r0(1 + w~t]) I/2) and radius 
(C2t21 - (0 - 0 0 - arctg(w0tl))2) 1/2. 

If t 1 is small, a real circle exists for angles 0 which only slightly differ from O0 + aretg(wotl). 
The following expressions are obtained for the solution (2.15): for the bicharacteristic C O 

x = X 0 + 1)0tl,  r = r0 ( l  + C2l?)~, 0 = 00 + arctg(C h) 

where r0 and C are constants and the trajectories are the straight lines y = r0, ~0z = +-roC(x - x 0 ) ,  
where x, y, z are Cartesian coordinates. The characteristics are defined by the equalities x = ~0tl + 

1 ¥(y,  zt l-  ), where V is an arbitrary function. 

4. S T R O N G  D I S C O N T I N U I T I E S  F O R  S I M P L E  S O L U T I O N S  

The invariant surface and the velocity of motion of the invariant surface in the direction of the normal 
are described, in the variables of the helical motion, by the formulae G(t, r, s)  = O, Dn = ---Gt(G 2 -I- 
G~(1 + r-2)) -I/2. 

The equations of a non-removable discontinuity are: 
a contact discontinuity 

[pl=O, to i =Gt +uiGr + ~3iG s =0, i=1 ,2  (4.1) 

a shock wave 

[pool=O, [p+pc02l=O, H(p2 ,P2;p l , p l )=O (4.2) 

where co = (Gt + uGr + "oGs)(G~ + G~(1 + r-2)) -1/2, H(p, p; Pl, Pl) = e(P -1, P) - e(Pi -1, Pl) + 
1/2(p-1 _ p{1)(p + Pl) is the Hugoniot function and e is the internal energy. For a polytropic gas, the 
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Hugon io t  adiabat ic  curve H = 0 takes  the f o r m  

P2P[ l = [(7 + 1)P2 - (Y - 1)pl ][(~/+ 1)pl - (~( - 1)p 2 ]-l (4.3) 

In  the  case of  a non- invar iant  surface of  a non - r emovab le  discontinuity G(t,  x, r, 0) = 0, the relative 
velocity is equal  to 

Co = (G, + UG x + VG r + Wr-iG~)(G2x + G2~ + r-2G~) - ~  

For  solutions (2.18), there  can only be  shock waves  when  To = 0, ~/= 2. In this case, the re la t ions 

[ P o ( 1 0 - N ) ] = 0 ,  [ p o + P o ( l o - N ) 2 ] = O ,  po2Po~=(3Po2-Po~) (3Poj -Po2)  -l 

are  satisfied and the  invariant  surface of  the shock wave is a moving cylinder in R 3 

r = l n - l ( kT  q) when  N = 0; "~(K~ ~ + 1)(1 - Kt2X) -1 when  N = --x 2 

xtg(xln(tT-1)) when  N = ~2; where  N and K are constants  

The  contact  discontinuity for  solution (2.18) is non-invariant .  It  is possible when  To = 0 and is def ined 
by the equali t ies x = v0t + Xo; [P0] = [a~0] = 0. 

The re  can only be  an invariant contact  discontinuity for  solutions (2.19) on a cylindrical surface r = 
ro[1 + (Wo t + ~o)2] 1/2 with the condit ions [Po] = [a~o] = [Wo] = 0, [u0] = 0, [u0] ¢ 0. 

Only a non- invar iant  non- removable  discontinui ty is possible  in the case of  the  solutions (2.15). 
A contact  discontinuity is defined by the equali t ies  x = a~0tl + x0; [P0] = [v0] = It0] = 0, [So] ~ 0. A 
shock wave is only possible when ~/= 1: x = N t  + Xo, [to] = 0, [Po(a~o - N)]  = 0 ,  [P0 + P0(V0 - N)  "] = 0, 
P02P0~ 1 = p01P0~ 1. 

For  solutions (2.16), an invariant contact  discontinuity is a cylinder r = [W2o(t + t0) 2 + r2o] v2 on which 
the condi t ions  [to] = [Wo] = [P0] = 0, [v0] ¢ 0 are  satisfied. The re  is no invariant  shock wave for  the 
set  o f  solut ions (2.16). The  plane x = ~0t - Xo with the condit ions [~0] = [P0] = 0 is a non- invar iant  
contac t  discontinuity.  A non-invariant  shock wave exists which is def ined by the p lane  x = N t  + Xo 
with the  condi t ions [Po(~o - fir)] = 0, [ p o +  Po(Vo - N)  2] = 0 and (4.3) with zero subscripts. The  
invariant  shock wave has the fo rm r = N ( t  + to) with the condit ions [p0(w~ - N] = 0, [Npo + 
po(w 2 - N)  2] = 0 ~md (4.3) with zero subscripts. 

In  the case of  solutions (2.17), the re la t ions  [to] = [w0] = [P0] = 0 are satisfied at the contac t  
discontinuity.  I ts  equa t ion  is }2 = w 2 ~  + }20 for  an invariant  contact  discontinuity and 0 = arctg[w0h(r 2 

2 1/2 2 
- W0~l)- + V(}2 - Wo~) for  a non- invar iant  contac t  discontinuity, where  ~ is an arbi t rary function. 
A shock wave can only be  invariant when  ), = 1 

r =  Nt t, [ p o ( w o 2 - N ) ] = 0 ,  [Npo +Po(W~) - N ) 2 ] = O ,  po2Po~=Po,Pol 

5. G R O U P  C L A S S I F I C A T I O N  

System (1.4) with the arbi trary e lement  A = A (p, p )  has the  following equivalence t ransformat ions :  
( 1 ) p '  = auo + a2, p" = a l p ,  A '  = alA; (2)p"  = - p ,  p '  = - p , A '  = -A ;  (3) t '  = a3t, u '  = a~lu, a~" = a31a~, 
w'  = a f l w ,  p '  = a:i2p, A = a-32p. 

T h e  resul t  o f  the g roup  classification of  system (1.4) is p resen ted  in Table 1 [11]. 

Explanation o f  Table 1. The kernel m = I occurs in aU 12 Lie algebras and r is the dimension of the algebra. All 
the algebras are factor algebras of the normalizers of a subalgebra of H and, in the corresponding algebras with 
special factorsA [1, Table 1], with respect to H. For m = 10,A = +-p in the general case. The plus sign is taken 
on the basis of physical considerations since A = pc 2 > 0, p > 0. The functions g, encountered in the table, are 
arbitrary: Y4 + Y + 2p0p, Zv = (1 - 7)Y + 2p0p + 2~oOp, II5 = Y + 2pOp, Y = tot - UOu - ~O, - wow. 

6. T H E  O P T I M A L  S Y S T E M  O F  S U B A L G E B R A S  F O R  A P E R M I S S I B L E  
L I E  A L G E B R A  I N  T H E  C A S E  O F  A G E N E R A L  E Q U A T I O N  O F  S T A T E  

A Lie a lgebra  L3 = {Y1, Y2, Y3} which is pe rmi t t ed  by system (1.4) has a single non-zero  c o m m u t a t o r  
[Y3, I12] = Y1. The re  is a two-paramete r  family of  non-trivial  i somorphisms of  the algebra: A2: x ~1 = 
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Table 1 

m A Operators r 

1 g(P, P) { rt : Oy, }'2 = toy + ~,  Y3 = ~,} - kernel 3 
2 pg(pp-V) Z v 4 
3 pg(pp-l) Zl 4 
4 g(p) 7-o 4 
5 pg(p) Y5 4 
6 7P Z0,Zt 5 
7 g(pe ~') Z 0 + 2~p 4 
8 g(p) Op 4 
9 ~p~' Zr~ p 5 

10 p Zl, ~p 5 
11 1 ZI,, o~p 5 
12 0 Z0, pg'(p~p + g(p)~p oo 

Table 2 

r N Basis Normalizer Subalgebra of Ln Subalgebra [1, Table 6] 

3 I 1,2,3 :3,1 1,4,7, 10 4.4 ° 
2 1 1.2 + ct3 3,1 1,7,4 + ~tlO -3.9 ° whenct ~0 or 3.11 

when cz : 0 
2 2 1.3 3.1 1, 7, 10 3.2 °0 
1 1 2+0t3 2,1 1 +7,4+ct10 -2.7 when ct~0 or 2.10 

when ct = 0 
I 2 1 3,1 1,7 2.9 ° 
1 3 3 2,2 1 + 7, i0 2.6 

x 1 - aax3,A3: x n = x 1 + a3 x2. Using these, the optimal system of  subalgebras is obtained which reduces 
to the normal ized system in Table 2 [1], where the numbers  o f  opera tors  forming the subalgebras are 
shown. The  normalizers are the subalgebras r.N. Subalgebras f rom Ll l ,  which are similar to subalgebras 
f rom the main table o f  subalgebras o f  the algebra L n  [1, Table 6] cor respond  to the subalgebras r.N. 
The  " - "  sign denotes  similarity while the " = "  sign signifies the autonormal iza t ion character  o f  a 
subalgebra [1]. Invariant  and partially invariant solutions of  rank  1 and 2 [3, pp. 247, 282] will be 
considered for  the subalgebras indicated in the final column of  Table 2. Here,  only the irreducible, 
partially invariant solution o f  rank 1 o f  a defect  1, constructed in the whole Lie algebra L 3 which is 
permit ted  by the submodel  (1.4), is shown. 

The  integrals 

S(p,p)=So (p= f(P, So)), u2 + M ( p ) = u 2 - B r  -1, rpu=OC(C-~u- ldr )  -1 

hold, where 

p 
M = 2[ p-lfp(p, So)dP 

o 

So, B, C and D are constants and the remaining functions are defined by the formulae ~ = [Cg(t = 
u-ldr) - s  - B C r  - 2 -  2B~ (r-3~ u-ldr)dr](C- ~ uqdr) -1, and w = B r q g ( s )  is an arbitrary function. 

W h e n  C --> .o, cp = ~o, an invariant solution, constructed in the subalgebra {Y1, Y3}, is obtained.  

7. N E C E S S A R Y  C O N D I T I O N S  F O R  T H E  E X I S T E N C E  O F  A S O L U T I O N  
W I T H O U T  A S I N G U L A R I T Y  O N  T H E  A X I S  

W h e n  r = 0, the submodel  (1.4) can have a singularity. Here,  it will be shown when the solution can 
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be represented by series in the neighbourhood of the axis r = 0 (summation over all k ~ 0) 

U=~,ukrk,  " X)=~,'Okr k, w = ~ . w k r  k, p=Y~ptr ~, p = ~ , p k r  ~, A=~. (k! ) - lAkr  ~ 

1 0 +AOpk +aOp(Pn_lPl A°t, Pn-lPl)+'-  A k = D~rA(p,p)lr=o = k .(App k + PtPn-I )+  

Substitution of  the series into system (1.4) and comparison of  the coefficients accompanying the same 
powers of  the variable r gives 

k-I k i k-I i-I 
ldjtPk-j + E Dk-I E jujui-j -k ~ Dk-l-i E Igjs'Oi-j -b 

j=O i=1 j=l i=O j=O 
k i 

+kPk - ~, Pk-I  ~ WjWi-j = 0 
i=O j=O 

k ( i-I 
E Pk-i ~i-2, + E 
i=2 j=l 

k 
+ P~s + Pk- 2s -- 2 ~, 

i=O 

~, Pk-i  Wi-lt  + ~, 
i=l j=l 

k i 

-Pk., + ~, Dk-i ~, UjWi-j = 0 
i=O j=O 

i_2 ) 
Ui-l-JJ'OJ +j~=O "DJs'Oi-2-J 

i 
Pk-i ~, UjWi-j = 0 

j=0 

i-I / 
Ui-jjwj +j~--O'= Wjsl)i-l-J -- 

+ 

k k-I k 

Pk-lt  + ~. Uk-jJPj + ~'~ Pjs'Ok-l-j + ~'. Pk-j(uj(l+J)+'Oj-ls)  =0 
j=l j=O j=O 

k k-I k 

Pk-lt  + ~, Uk-jJPj "l'j~=O Pjsl)k-l-j + ~ ((k-J)!)-I A~-j(uj(l+ j)+ Dj-ls) =0 
j=l j=O " 

(7.1) 

The physical meaning of  the helical motions lies in the fact that 

Uo = w o = 0 ,  X)os=Pos =pos- -0 ,  Po;~O 

When k = 0, the equations obtained become identical. 
When k = 1 

p t = 0 ,  u t = - ~ p o l p ~ ,  p o = f ( P o , S o )  

are determined, where f is a general solution of  the equation p0dp0 = A0dpo and So is a constant of  
integration. 

When k = 2, the quantities 

w I =-X) 0 - a ' ( s t ) ,  s I = s-~x)odt  

Pl = B(Po)b(sl), P2 = s(x)oPo-Po~)'o)-p'oa+m(t) 

B = po ~ exp( -  J Ap (po, f (po))A -t (po,f(po))dPo) 

u 2 = -~ "ui. ~ + ~ Bp~PoIA~Aolb 

are determined from system (7.1). 
The equality remains 

PolOS) 2 - ~ (In Po)"Bb(sl ) - Po (X)o - a'(sl ))2 + 

+2s('Oop~ - poX)~) - 2p~a(s I ) + 2m(t) = 0 (7.2) 
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which it is necessary to investigate for compatibility. 
An equality is obtained after differentiating (7.2) twice with respect to s and once with respect to t 

from which only the possibilities follow 

1) a'" = 0, b" = 0; 2) a" = 0, [(lnpo)"B(po)Pol]" = 0 
3) [b"a"-I ]  ' ' =0; 4) [(lnPo)"B(P0)Pol]'=x)~ =0  = 1,) 0 

The solutions of Eq. (7.2) in each of the cases are 
Case 1 

1 
a =oqs I + s  o, b =l~lSl +[~o, ~o = VoPo +¢q --~ltPo~B(po)Pol(lnPo) ''dt 

• , , 1 )2  1 -1 ,2  I 
m=Otop o - ( ~ o p o - p o ~ o ) j ~ o d t + ~ ( ~ o - [ ~ l  ~ P o  Po + [~o(lnpo) "" 

where %, o~1, ~0,  [~D0, V0 are constants and p0(t) is an arbitrary function. 
Case 2 

a = otis I + OCo, Po = Co eO, "Oo = PoVo + Oil 

1 -2 2~ 
m = Po C°to -1C28 - Co~t- ctlVoP o +-~v 6 Po) 

where %, al ,  Co, C, V0 are constants and b(sl) is an arbitrary function. 
Case 3 

a=a)osl+ Cls ?, b=~o+ CC, s?, m='ootPo--ffpoPo-C-l~oPo lnpo+ C 1 

where sl = s - x)ot, C ~ 0, C1, [10, a~o are constants and the function po(t) is determined from the equation 

CB(po)(lnpo)" + po(41npo + C1) = 0 

Case 4 

Po=Co ec`, m =-CCog~e°(t+to', a = - l  cs21+oqsl + l  c2 -to~20 -1C-1(9o - ~ l '  2 

where Co, C, t~l, ~o, to are constants and b(sl) is an arbitrary function. 
When k = 3, the quantitiesp3 = 2/3po(a' - a~0)w2 + 1/6(In P0)'P2 - 1/6p'oUb + 1/9p0~0um + 1/9Bbulss 

+ L1 are determined from system (7.1) and a linear system of equations is obtained for We, P2, ul. 
The function Us is determined from the fourth equation of (7.1) after which u2 is found in the following 

step 

-4pou3 = PoD2s + P2t + u2Pl + Pls~l + P2s~o + 4p2ul + Pl (3u2 + ~1~) 

and this equality is used to derive an equation for x) 2. 
It is proved that, ifpk_l, ui, ~i-2, Wi, Pi, Pi, i < k - 1 and Uk-1 are determined in terms of ~k-2 at the 

( k -  1)th step, thenpk, Uk are found in terms of ~k-1 at the kth step and a system of differential equations 
is also obtained for finding ~k-2, Wk-1, Pk-1- 

If P0 = Co ect, the system splits and an equation for Pk-1 separates out. If, in addition to this, a" = O, 
then the equation for Uk is integrated and a single equation is obtained for ~k-2. 

So, cases 1-4 define the necessary conditions for the existence of a solution of system (1.4) without 
a singularity on the r = 0 axis. 
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