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An invariant submodel, constructed in a subalgebra from the sum of a rotation and a displacement [1], is considered within the
framework of the PODMODELI program. A group classification is carried out and the optimal system of subalgebras, which is
compared with the optimal system of the basic model, is calculated. Furthermore, the system of equations of the submodel is
reduced to a symmetric hyperbolic form. Simple solutions of this system, with pressure and density which depend solely on time,
are considered. The characteristics, the characteristic conoid, trajectories and strong discontinuities are calculated for these simple
solutions. The necessary conditions for the existence of a solution without a singularity on the axis are derived. © 1996 Elsevier
Science Ltd. All rights reserved.

1. EQUATIONS OF THE SUBMODEL AND THEIR SYMMETRIZATION
The system of gas-dynamic equations in cylindrical coordinates
pdU+Vp=f, Aldp+U,+V, +r'Wy=-rlv 1.1)
dp=pU,+V,+r'Wo+rtv)=0 when dS=0
(V=(0,,0,,r19p), f£=(0,pW2,-pVW), A=pc?, c2=2ffdp
d=09,+ Ud, + Ud, + r'dy)

is considered, where U = (U, V, W) is the velocity, p is the pressure, p is the density, S is the entropy
and p = f(p, S) is the equation of state. System (1.1) with an arbitrary function A(p, p) admits of 11
transformations and a continuous parametric group of transformations with the Lie algebra L4 [1].

A submodel of helical motions is constructed as an invariant solution using the one-dimensional
subalgebra H = {X; + X7} C L,;, where X; = d, is the operator of displacement with respect to the
variable x and X; = 9y is the operator of rotation about the x axis, written in the cylindrical variables
x, r, © which are related to the Cartesian coordinates by the equalities

X} =X, X;=y=rcosd, x;3=z=rsinb
uy=U, uy;=Vcos--Wsin®, us;=Vsin0 + Wcos0 (1.2)

An invariant solution is sought in the form

U=U(@,r,s), V=Vurs), W=W(@r,s
p=prs), p=pirs), s=x-06

The equalities r == const and s = const correspond to a helix.
By the transformation of the invariants

u=V, v=U-riW, w=w (1.3)

the factor system reduces to one of the evolutionary type

p(u, +uu, +vu,)+ p, =pa, A"(p, +up, +0p)+tu, +v, = -rlu
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P, +up, +op, +plt, +v,)=—r"'up Or S, +uS, +vS,=0 (1.4)
(u=(u,o,w), a= (al ,a2,a3) = (r"w2,2r’2uw,—r"uw))

In order to study the correctness of the Cauchy problem for system (1.4), it is necessary to reduce it
to a symmetric form [2, p. 70]. To do this, the equation for the entropy is chosen and a linear
transformation of the velocities is carried out using the formulae

v = b;:uj(u1 =u, ut=v, w=w), u =c,~j\)", b;c,{ =8‘}c
System (1.4) is transformed into the system which, in matrix form, is
A'q +4lq, +A%, =D, q=(' v’ ,v,p,5) (15)
A’ = diag{p,p,p,A7",1}, D=(d,,dy.d,.d,,0)"
pciv’ 0 0 bib, +biby,,
0 pctv’ 0 bib, +blb,.,

o o o ©

At =[o0 0 pckv’ bib, +b3b,,, , k=12
c{‘ c§ c_%‘ A"c;‘ni
0 0 0 0 kv’

b=1, b= 1+r72, by=0, b, =—r7, d, =—ur’! —1)i(c}, +c,§)
d; = pbj-ai +pcivk @, + €n0™0 , Wi, x'=r, x*=s
In the case of symmetric matrices A%, it is required that the six equalities
cf =bib, +bib,,, k=12; i=12,3 (1.6)

for determining the nine elements of the matrix B = (b,‘:) must be satisfied.
If one introduces the angles o;; between the vectors by = (b}, b% b?) and b;, it then follows from (1.6)

O =04, =/2; Ibyl=1, Ibyl=r(1+r3) sin" oy, Ibsl=(1+72)% ctgory,
Specification of the angle a3 and the directions of the vectors by and bs (or b,) with the conditions
b; - by = by - by = 0 defines the matrix B.
For example, let
ap=n/4, b =(1,0,07, by=(0,0,(1+r)%)T
b, =0, r(1+r2) %, r1+r2)A)T

then

Here

D=(Brip(v? -v*)?, Bpv (2 +20°), Bpv'2vid+rH)+v (-2, -r'v,0)7

B=ra+r3)"!

2. SIMPLE SOLUTIONS

The system of equations (1.4) resembles the system of equations of plane gas dynamics for which a
constant solution is a simple solution which depends on five arbitrary constants and is specified in the
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whole space for all times. It would also be desirable to have a solution with analogous properties in
the case of system (1.4). It is proposed that we seek a solution with a pressure and density which depend
solely on time p = p(t), p = p(t). In this case, (1.4) becomes the overdetermined system of equations

A(p, p)dp = pdp (2.1)
u, +uu, +ou,=a, u, +o,+ru+plp’=0

The first equation of the system determines the function p(¢) if the function p(t) is specified. System
(2.1) defines isentropic flows and it is necessary to investigate it for compatibility. The equations of the
system are initially integrated in Lagrangian variables.

Remark. System (2.1) follows the symmetry of the basic system of equations of gas dynamics, the normalization
factor of the algebra H in the algebra L;: d,, 9, td; + d,. In addition to this, the extension operators rd, + ud, +
wa,,, pd, are permitted.

The change to Lagrangian variables is defined by the system of ordinary differential equations
or=u(trs), 9ds=v(trs) rwo=§& slo=7 (2.2)
The solution of (2.2) r = r(z, €, ), s = s(t, &, 1) defines the change to the variables &, | (¢ is a parameter)
is the Jacobian of the transformation is non-zero rgsy — ryse # 0.

In Lagrangian variables, all the equations of system (2.1) are integrated with respect to the
variable ¢

r2=E2+ 022 + 2041, s=m+ Pr—arctglyr(oyt + &H7] 23)
0282 =9 + o (24)

u=rla+a), v=p-y?2 w=y! (2.5)
r(resy — ryse) = p~iJ (2.6)

The quantities o.# 0, oy, y# 0, 3,7 # 0depend on & # 0, . In (2.6), the initial data are not taken
into account since they will be subsequently changed. On substituting (2.3) into (2.6), we obtain an
equality from which a rational form of the function

p=R()IP(t), P=S2+8t+8,, PA=T’+Te* +T, + i + T+ T,

is determined.

With such a function p(t), equality (2.6) has a free variable ¢ which occurs in a rational manner.
Equating the coefficients accompanying the different powers of # to zero we obtain eight equations for
the functions o, o;, B and the constants T}, S;.

Equivalence in the set of possible solutions is introduced using the transformations which are permitted
by system (2.1) and have been noted in the remark. They form a group G (invariant variables are not
indicated): (1) =t + t; (2)s' =s+ 50 3) s =s+ct,vV =v+c;(4) 7V =ar,u’ = au,w = aw; (5)
p’ = bp. These transformations are extended to the coefficients of the solution (2.3)

2,2

o' =a'o, of=al0y+oa?, E?=aE?+alald +20,a7,

J = Ja-Zb-l , B' = B -, ,Yl = ,Ya—2
N =1 -5 + (B — )t —arctg[ Vo (042 +£7)7']
and, in this case, equality (2.4) remains invariant. The parameters of the transformations ¢y, sy, a, b, ¢

are functions of & n and, in this case, the initial data for problem (2.2) change. The extended
transformations form a group Gs, the Lie algebra of which is defined by the basis set of operators

s Op, JO;, 020y, +0,E7'0, + (B~ )2, 0B, +204,9;, +&3; +279,
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The invariants of the group Gjs are: I= yo? (o} — a£2)y2 = —1. The value of the second invariant
is taken by virtue of equality (2.4).
The new parameters of the solution { = o072, I are introduced

=P+ +8)?%), s=n+Pr—arctglr(C? + e+ 17)Y @7
u=02rl(t+8), v=Pp-lo2?, w=Ilocr! (2.8)

The equivalence transformations of the invariant parameters take the form

0 =1 = 50 + (B - o - arctgllto(Gro + & + ), o = o™
C=Cerat, P=p-c

In the space of the parameters o, &, B, 1, the group acts transitively and, hence, any values of the
parameters can be obtained from the fixed values, for example, 0. = 1,{ =0, =0,n = 0.

Formulae (2.7) define the change to Lagrangian variables if not all of the parameters I, o, {, B, 1 are
fixed. If the magnitude of the parameter / is arbitrary, it is possible to fix three parameters from o, {,
B, n and, moreover, by three methods.

The case { = B = 1} = 0 gives the solution

25, v=t"sinscoss, w=—rt""sinscoss 2.9)

p=t", u=rt"lsin
The case o. = 1, B = n = 0, after a displacement with respect to ¢, gives the solution
p=1, u=tr, v==r2(? -2, w=r (P -4 (2.10)

which is invariant with respect to the operator dy.
The case o. = 1, { = n = 0 gives the solution

p=rl, u=p1 (2.11)
=57 — 12 (2~ 2y 1 e arctglr(r — 12y K4
w=r(? —tz)}é
which is invariant with respect to the operator td, + 9.
The case o. = 1, { = B = 0 leads to (2.10).

Let 7 be a fixed function of the parameters o, {, B, 1. Then, only two parameters can be fixed.
The case o. = 1, { = 0, I = I(B, f) leads to the solution

p=(Tyt+To)y, u=u!
v=—r 22 — Y5 4 (T + Ty) ' T (s +arctglt(r? — 2 %1+ g(r? - 1))

w= r“'(r2 —tz)y2

where g(A) is an arbitrary function.
Remark. The quantity I = I(Tof + Tf) is expressed in terms of an arbitrary function, and it can therefore be
taken as an independent parameter in the Lagrangian transform and the solution can thereby be reduced to the

formulae which have been considered earlier. This remark refers to cases when the magnitude of / is determined
with a functional arbitrariness.

The case oo = 1, p = 0, = I({, f) leads to the solution
P=(Tt+Tp)", u=@+r, v=-r(r2 -+

w=rr -4 O
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The function § = {(t, 7, 5) is determined from the equality
g(K) = s+arctg{t(r? - 1+ {2)Y)(r? =12 +10) 1+
T2 [IK + 218K +2T6 — TOX 1 Gl

where g(K) is an arbitrary function, K = Ty(* — £ — 2{) - 2T,{.
The case oo = 1,m = 0. I = I({, B) gives the solution

p=t(t+Ty), u=(+0r!
v=st 2 — e+ 0V + arctg[t(r? — (¢ + {2V (r? — 12 - &)1
w=rrl - (1+{)? ]y2

The function § = {(z, , 5) is determined from the inequality

g(RY) =5t + 1 arctg[t(R* - (- Ty)2)VA)R? - T + 4+ 2T,8) ' 1+

+% R (Ty + R)* arctg[(Ty - RX(Ty + R) (R+ T, - D% (R- T, + O %1+

+% Ty arccos[ R (§ - Ty))

where g(R?) is an arbitrary function, R? =  — # + T% - 2{(t + T).
The case { = B = 0,1 = I(c,, f) leads to the solution

p=(?+Tp)", u=t(rt+ I (@ +Ty)™ (2.12)
v=—r 2 + YAy - L2 YA (R + Ty) !
w=r (R 4 I YTy - 1) (2 + Ty
The case { =1 = 0,1 = I{a, B) leads to the solution
p=t P +10)7, u=r(B2+1%)!
v=stt + 1 arctg(l ) = I +12)Y, w=rl(1F +42)
The function I = I(t, r, 5) is determined from the equality
(=) +1) " exp[2t(st™ + 17 arctg(el )} = g(r2 (1 -T2 ) (12 +72)7Y)

where 7 is arbitrary constant and g(A) is an arbitrary function.
The case B = n = 0,1 = I(a, {) leads to the solution

p=t T +Ty)", u=r@+ QU +(+5)*1"
=012 +@+0", w=I[P+@+0*T"

where § = -1/2tx(1/4£ - - It ctg 5)” and the function I = I(t, r, s) is determined with a functional
arbitrariness from the differential equation

Ty +[ (1% - §%)+ TyG)ly = I(Ty - 2T38)

It remains to consider the possibility of w = 0 in (2.5). The solution of system (2.1) in Lagrangian
variables takes the form

r=ot+&, s=Pr+m; u=0a, v=Pp, w=0
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Transformations (1)-(5), extended to the coefficients, form a transitive group
o =aa!, B=P-c, E=alE+ar), W=n+iB-c)-s, J =Jb"a

All the coefficients o. = 1, € = B = 1 = 0,J = 1 can be fixed by these transformations. In the Lagrangian
substitution, two parameters must remain arbitrary. Only the following consistent cases are obtained.
ThecaseB=E=0

p=r? u=rrl, v=w=0 (2.13)
Thecasen = =0
p=r3, u=rr', v=s!, w=0 (2.14)

Thus, solutions of system (2.1) which allow of a Lagrangian substitution are reduced by equivalence
transformations to the simplest solutions (2.9)—(2.14). The solutions (2.9)—(2.12) allow of an increase
in the constant parameters up to five with the transforms of the permitted group (1)-(5). An explicit
formula for the pressure is obtained in the case of a polytropic gas A = yp from the first equation of
system (2.1): p = Bp™".

(2.9)=> u=r(t+1,)" sin? (s — vyt — 5¢) (2.15)
V="V + St +15) " sin2(s — vyt - 59)
w=—Jir(t+1p) " sin2(s - Vot —89), P=Pot+10)", p=polt+1)"
(2.10) > u=w2rl(t+1,), v ="0p - wor2[r? -wd(t+1,)* V% (2.16)
w=wor [r? —Wg(H'to)z]%, P=Po» P=Po
QAN D> u=wirt+1) (2.17)
V= (5450t +8g) ™ = wor 2[r? —wh(t+1,)2 V2 +
+(2+19) " arctg{wy (8 +10)r* — w3 (8 +15)? %)

w=wor [ —wd(t+1)2 1%, p=polt+t)™, p=polt+1p)

212y = u=rt(r? + I))(1* + Ty)™ (2.18)
V=g - r2(r? + 1) (Tyr? - I YA (2 + Ty)™!

w=r (2 + YTy = 1?2 (2 + Ty)™

p=pot*+To)", p=po(t’ +T5)™"

When I = 0, solution (2.18), after the displacement #; =1t + vgwg , has the form
u=warty(Fwi +1)7"', v=uy-w, ttwl +1)? (2.19)
w=wor(fwg + 17!, p=poleiwg +1)7

p=po(fwd+1)7, S=S;, ¢ =1popg (ifws +1)'7T

3. CHARACTERISTICS FOR SIMPLE SOLUTIONS

In the case of system (1.2), the characteristics g(x, r, 8) = const for the solution are determined from
the equations [2, p. 60]
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Co: 8,+Ug, +Vg, +r'Wge=0 (threefold)
Cii g +Ug,+Vg, +r'Wgytc0=0, 0=(g?+g+rg)"
The bicharacteristics satisfy the system of ordinary differential equations
Cot dx=U, dr=V, rdo=W
Ci: dx=Uzxcg, 07, dr=Vitcg, 0", rd0=Wtricg,0™!
~di8, =U,8, +V,8, +1"' Wgo £¢,0, —d,gy =Upyg, + Vg, +7 ' Wyge £ o0
-dg, =U,g, + V,g,(r"W),go tc,QF cr'3g§Q'1
In the case of system (1.4), there are three invariant characteristics
Co: h;+ uh, +vh;=0 (threefold)
Cy: by +uh, +Vh £cqg=0, g=(h?+(1+r2)h2)"
The bicharacteristics are defined by the equations
Co: dr=u, ds=v
Citdr=uzt ch,q'l, ds=vxch(l+ r? g, dh, =-uh. —vh Fcq
dh, = ~uh, —v,h, ¥ c,qtcrnlq”

For the simple solution (2.19), the following expressions are obtained for the invariant quantities:
for the bicharacteristic Cy

r=r(twg + 1)%, § = Xo — 6y +ugt; —arctg(wyt) ) @3.1)
and the characteristic surface has the form

h=®(r(twg + )%,  s—ugt +arctg(wot,)) = C
The representation

r=(twi +12 6% @)

l{
5 = X — 0 + ugt — arctg(wyty ) + A Yoy’ )%f (*wi +1)"72 x (3.2)
0

X[14+ A (22wE + DI A[G™ (2) + 1+ 22wl dz
where
Gy = + 208 -V ge) + 82(1)
‘ —
8(1) = Cpope [ (@2wd + 172 (1= N 2w + DT Hedz
0
holds for the bicharacteristic Cy.

For fixed xg, 7g, €y, formulae (3.2) define a parametric representation of a characteristic conoid with
parameter A. The vertex of the conoid is obtained when ¢ = 0. For small ¢, close to the vertex of the
characteristic conoid, its intersection by a plane ¢; = const is a circle

R? + 5% = ypypy'tir? (33)

and, moreover, the centre of the circle moves along the trajectory (3.1).
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When 0 < y < 2, the integral g(o) converges while the integral in the expression for s diverges. Hence,
when #; — <o, the oval (3.2) is elongated along the S axis.
The bicharacteristics Cy for (1.2) are

X=Xy + uotl , 0= 90 + arCtg(WOtl ), r= ro(l + tl2w§ )}/2 (3-4)

The projection of the line (3.4) onto R*(x, r, 8) is a straight line which is represented by the equalities
X = Xo + UgWq'ry'z, y = ry in the Cartesian system of coordinates y = rcos (8 — 6), z = rsin (8 — 6;).
The bicharacteristics C, for system (1.2) in solution (2.19) are defined by the equalities

r=ry(1+wit )1+ B2 (W = 1)g% + 2¢or (A — 1) g(1 - w2 2) A 15
where

I
g= J‘ @PWE+1)12 (02 + 22wd) fdy
0
H
X = xo +uphy +cof (Wi + D22 + 22w )_% dz
0
ly
0= 0, +arctg(wory) + A2 ~ DY co | (2w2 + 112 (A2 + 22wdy B r2dy
0

If the parameters A and p are eliminated from these equalities, then a hypersurface in the space of
the variables ¢,, x, r, 0 is obtained which determines the characteristic conoid. When t; — 0, the conoid

is defined by the equalities

(x — xg — gt )* +(r = iy (1 + witl )}é )2 +(8 -8, - arctg(wyt))” = coty

The intersection of the conoid by a plane #; = const is a closed surface in the space R® and, in this
case, a point on the trajectory lies within this closed surface. The intersection of the surface by a plane
0 = const is a part of a circle g > 0) with centre at the point (xq + ugty, ro(1 + w20t2;)1/2) and radius
(b — (8 — By — arctg(wet)))") ™.

If t; is small, a real circle exists for angles 6 which only slightly differ from 6, + arctg(wy,).

The following expressions are obtained for the solution (2.15): for the bicharacteristic C,

X=X+t r=n(+Ci2)E, 6=0,+arctg(Ct)

where ry and C are constants and the trajectories are the straight lines y = ry, vz = xriC(x — xg),
where x, y, z are Cartesian coordinates. The characteristics are defined by the equalities x = vyt +
w(y, zt, '), where  is an arbitrary function.

4. STRONG DISCONTINUITIES FOR SIMPLE SOLUTIONS

The invariant surface and the velocity of motion of the invariant surface in the direction of the normal
are de,scribedf in the variables of the helical motion, by the formulae G(t, r, s) = 0, D, = —-G(G?, +
GX(1 + riyy 2,

The equations of a non-removable discontinuity are:

a contact discontinuity

[p)=0, ©;,=G,+u,G,+v,G,=0, i=12 4.1)
a shock wave
[pw]=0, [p+pw’1=0, H(p;, py:p1,p)=0 (4.2)

where ® = (Gl + uGr + DGS)(GZr + st(l + r~2))—1/2, H(p: D; P1y pl) = E(p_l’ P) - s(pl_la Pl) +
12(p - pr)(p + py) is the Hugoniot function and € is the internal energy. For a polytropic gas, the
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Hugoniot adiabatic curve H = 0 takes the form
PP =[(Y+ 1Py — (Y= Dp (Y +Dp; — (¥ = 1p, T (4.3)

In the case of a non-invariant surface of a non-removable discontinuity G(t, x, r, 8) = 0, the relative
velocity is equal to

@=(G, +UG, +VG, + Wr''G} (G2 + G2 + r G2y %
For solutions (2.18), there can only be shock waves when T, = 0, y = 2. In this case, the relations
[Polo —M1=0, [py+po(lo —N)*1=0, pep5i =(BPoz —Po1)(3Por —Por)™
are satisfied and the invariant surface of the shock wave is a moving cylinder in R?
r=In""(kT ) when N = 0; (K& + 1)(1 - K&y when N = —?
tg(tin(tT")) when N = 1% where N and K are constants

The contact discontinuity for solution (2. 18) is non-invariant. It is possible when T = 0 and is defined
by the equalities x = vyt + xg; [Po] = [Vg] =

There can only be an invariant contact dlscontmulty for solutions (2.19) on a cylindrical surface r =
ro[1 + (wot + vo)’]? with the conditions [pg] = [vo] = [Wo] = 0, [ue] = 0, [o] # 0.

Only a non-invariant non-removable discontinuity is possible in the case of the solutions (2.15).
A contact discontinuity is defined by the equalities x = vof; + xo; [pol = [1)0] = [to] = 0, [s0] % 0. A
shock wave is only possible when y = 1:x = Nt + xg, [to] = 0, [po(vo — N)] = 0, [po + po(ve—N)¥] =
P02P02 —P01PO1

For solutions (2.16), an invariant contact discontinuity is a cylinder r = [W(t + o) + Po]*? on which
the conditions [t5] = [wo] = [pe] = 0, [vg] # 0 are satisfied. There is no invariant shock wave for the
set of solutions (2.16). The plane x = vyt — x, with the conditions [vg] = [pg] = 0 is a non-invariant
contact discontinuity. A non-invariant shock wave exists Wthh is defined by the plane x = Nt + x;
with the conditions [pg(vo — N)] = 0, [po + po(vg — N)*] = 0 and (4.3) with zero subscripts. The
1nvar1ant shock wave has the form r = N(t + t;) with the conditions [po(wh — N] = 0, [Np, +
po(wh — N)?] = 0 and (4.3) with zero subscripts.

In the case of solutions (2. 17) the relations [t] = [wo] = [po] = O are satisfied at the contact
discontinuity. Its equatlon is?? = 1+ rg for an invariant contact d1scont1nu1ty and 0 = arctg[wotl(
- w20t21) 12 4 \|1(12 - w0t21) for a non-invariant contact discontinuity, where W is an arbitrary function.
A shock wave can only be invariant when y = 1

r=Nt, [po(wi-N)I=0, [Npy+po(ws—N)*1=0, ppps = PoiPol

5. GROUP CLASSIFICATION

System (1.4) with the arbltrary element A = A(p, p) has the following equlvalence trarlxsformatlons
Vp' =ap +ayp =app, A’ =ayd; Q)p’ = -p,p' =—p, A" =-A; )¢ =ag, ' =a3u,v" = a3 M,
W =ay'w,p’ = a3’p, A’ = ai*P.

The result of the group classification of system (1.4) is presented in Table 1 [11].

Explanation of Table 1. The kernel m = 1 occurs in all 12 Lie algebras and r is the dimension of the algebra. All
the algebras are factor algebras of the normalizers of a subalgebra of H and, in the corresponding algcbras with
special factors A4 [1, Table 1], with respect to H. For m= 10, A = *p in the general case. The plus sign is taken
on the basis of physncal consxderatlons since A = pc2 > 0, p > 0. The functions g, encountered in the table, are
arbitrary: Y, + Y + 2pd,, Z, = (1~ 7)Y + 2pd, + 2ypd,, Y5 = Y + 2pd,, Y = 10, - ud, — vd, — wo,.

6. THE OPTIMAL SYSTEM OF SUBALGEBRAS FOR A PERMISSIBLE
LIE ALGEBRA IN THE CASE OF A GENERAL EQUATION OF STATE

A Lie algebra L, = {Y}, Y,, Y3} which is permitted by system (1.4) has a single non-zero commutator
[Y3, Y,] = ;. There is a two-parameter family of non-trivial isomorphisms of the algebra: A,: x’! =
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Table 1
m A Operators
t 2p.p) {Y,=0,.Y,=19,+9,, ¥3=9,] - kernel 3
2 PEPPY z, 4
3 pepp™) z, 4
4 &p) 4 4
5 P&P) Ys 4
6 1w 2y, Z, 5
7 gpe™) Z,+24, 4
8 0 9, 4
9 ! Zp9, 5
10 P Z,,9, 5
1 1 Zy, 9, 5
12 0 Zy, pg'(P)9, + 8(p)3, o
Table 2
r N Basis Normalizer Subalgebra of Ly, Subalgebra {1, Table 6]
3 1 1,2,3 =31 1,4,7, 10 44°
2 1 1.2 +a3 3.1 1,74 + al0 ~3.9° whena#0 or 3.11
when o =0
2 2 1.3 3.1 1,7, 10 3.20°
1 i 2+03 2.1 1+74+al0 ~2.7 when a#0 or 2.10
when 0.=0
1 2 1 3.1 1,7 2.9°
1 3 22 1+7,10 2.6

x! —a®, Ay xt = x* + ag®. Using these, the optimal system of subalgebras is obtained which reduces
to the normalized system in Table 2 [1], where the numbers of operators forming the subalgebras are
shown. The normalizers are the subalgebras r.N. Subalgebras from L ;;, which are similar to subalgebras
from the main table of subalgebras of the algebra L;; [1, Table 6] correspond to the subalgebras r.N.
The “~” sign denotes similarity while the “=" sign signifies the autonormalization character of a
subalgebra [1]. Invariant and partially invariant solutions of rank 1 and 2 [3, pp. 247, 282] will be
considered for the subalgebras indicated in the final column of Table 2. Here, only the irreducible,
partially invariant solution of rank 1 of a defect 1, constructed in the whole Lie algebra L; which is

permitted by the submodel (1.4), is shown.

The integrals

S(p.p)=S, (p=f(P.S)), u>+M(p)=ui-Br', rpu=DC(C-fu'dry!

hold, where

Sg, B, C and D are constants and the remaining functions are defined by the formulae v = [Co(t =

p
M =2[ p™' £,(p.So)dp
0

Juldr) —s - BCr* - 2B (r* u™'dr)dr)(C - fu'dr)™, and w = Br'¢(s) is an arbitrary function.

When C — o, ¢ = 1, an invariant solution, constructed in the subalgebra {Y}, Y3}, is obtained.

7. NECESSARY CONDITIONS FOR THE EXISTENCE OF A SOLUTION
WITHOUT A SINGULARITY ON THE AXIS

When r = 0, the submodel (1.4) can have a singularity. Here, it will be shown when the solution can
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be represented by series in the neighbourhood of the axis 7 = 0 (summation over all k£ = 0)

u=Surt S v=3urt, w=Iwrt, p=Xp,t, p=Xpst, A=3X(kD'AF
Ay = DFA(P.PY, o = k!(Ang + Agl’k + Agp(Pn-ll’: +P1Pn)t A,?,,Pn—lpl ...

Substitution of the series into system (1.4) and comparison of the coefficients accompanying the same
powers of the variable r gives

k-1 i-l

Z jlpk ;+2 pk 12 J“,“.,"’E Pk 1- 12“}\ l-_[+

Jj=0

+kpk Z Pi- IZ wj i-j =

n

-
I
~

i-1 i-2
Pk-i(“i-zz + Z Ui y_jJu; + 2 Usti-z-jJ+

+Dgs t P 2v_220 P .Zou w;_;j =0
i= j=

M~

i

i S (7.1)
| Pr-i| Wit + Z u_jjw; + 'Zo WisVi-; |~
j=

—pkv+2 Pklzuw =0

i=0

k- k
Pr-1r t Z U_;jpj+ Z PjsVr-1-; + 2 Pr-j(u;(A+7)+v;_1,)=0
k 1
Pr-ut Z Uy - j.’p]+ Z p_,\uk 1- j+ 2 ((k J)') Ak ](u (1+J)+U/ ]\) 0
The physical meaning of the helical motions lies in the fact that
up=wo=0, Vos=po;=pos=0, po#0

When k = 0, the equations obtained become identical.
Whenk =1

P =0, w=-%p3'Po Po= (P05
are determined, where f is a general solution of the equation pydpy = Adpy and Sy is a constant of

integration.
When k = 2, the quantities

wy =—Vg —-a’(s), §=s5-]vydt

P1 = B(Po)b(s)), Py =s5(VePg — PoVp) — Poa+ m(t)
B =pff exp(= Ay (Pos F(Po DA™ (Pg. F(Po))dPo)

Uy == Y501, + Y4 Bpopo Ay Ag'h

are determined from system (7.1).
The equality remains

Yipo'Ps — Y5 (Inpg)”’ Bb(s;) = po(vg — a’(s)))? +
+25(09P5 — PeVy ) — 2ppa(s;) +2m(1) = 0 (7.2)
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which it is necessary to investigate for compatibility.
An equality is obtained after differentiating (7.2) twice with respect to s and once with respect to ¢
from which only the possibilities follow

Da”=0, b”=0; 2)a” =0, [(Inpo)’B(Po)po 1 =0
3) [b”a”"'Y =5 =0; 4) [(Inpg)”B(py)pg' ) =05 =0

The solutions of Eq. (7.2) in each of the cases are
Case 1

1 - ’
a=oys;+0g, b=Pis+Bo, Vo =Vopo+o, - ZBIPO I B(po)p3' (Inpg)”“dt

o I 1 1 .,
m = 0gpg — (VPG — PoV) f vods + 5o - B’ - gF’o]Po2 + zﬁo(ln Po)

where 0y, 0, Bg, Po, Vp are constants and py(?) is an arbitrary function.
Case 2

a=os+0g, Po=Coe”, vy =poly+a,

1 1
m= Po(cao —§C2 - Coift — oy Vg +‘2'V029(2))

where 0y, 0, Co, C, V} are constants and b(s;) is an arbitrary function.
Case 3

1 1 , 1 ., _ 1
a=“osl+‘2‘C13|2’ b=Bo+§CC1512’ '”=“otPo—'§POIP02’ClBoPo(l"Po"‘ZC))

where s; =5 ~v¢t, C# 0, Cy, By, Vg are constants and the function py(?) is determined from the equation

CB(po)Inpo)” + po(4lnpy + C1) = 0

Case 4

po = CoeCl, m= —CCO'U(Z)eC‘ (t+t0 ), a= ‘_%Cslz +(l|s| +‘;‘C2 - to‘l)(z) —‘%C-I (UO —(l, )2

where Cy, C, 04, v, ¢ are constants and b(s,) is an arbitrary function.
When k = 3, the quantities p; = 2/3pg(a’ — vo)w, + 1/6(In pg)”p, — 1/6p’gys + 1/9pg0gL1,s + 1/9Bbuy,,
+ L, are determined from system (7.1) and a linear system of equations is obtained for w;, p,, v;.
The function u; is determined from the fourth equation of (7.1) after which v, is found in the following
step

—Apgu3 = Py, + Py +UpPy + Py V) + Py Vg + 4Pl +y (3uy +0yy)

and this equality is used to derive an equation for v,.

It is proved that, if py_;, u;, V-5, W;, pi, Pi» | < k — 1 and u;_; are determined in terms of v;_, at the
(k- 1)th step, then py, uy; are found in terms of v;_; at the kth step and a system of differential equations
is also obtained for finding v;_5, wi_1, Pi-1-

If pg = Ce®, the system splits and an equation for Pr-1 separates out. If, in addition to this, a” = 0,
then the equation for i is integrated and a single equation is obtained for v;_,.

So, cases 1-4 define the necessary conditions for the existence of a solution of system (1.4) without
a singularity on the r = 0 axis.
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